Long-term wind speed prediction using artificial neural network-based approaches

Author:

Madhiarasan Manogaran,

Abstract

<abstract> <p>In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference24 articles.

1. Madhiarasan M (2018) Certain algebraic criteria for design of hybrid neural network models with applications in renewable energy forecasting. Anna University, Chennai, India.

2. Madhiarasan M, Deepa SN (2016) A novel criterion to select hidden neuron numbers in improved back propagation networks for wind speed forecasting. Appl Intell 44: 878-893.

3. Madhiarasan M, Deepa SN (2017) Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. Artif Intell Rev 48: 449-471.

4. Madhiarasan M, Deepa SN (2016) Comprehensive study of various forecasting techniques for forecast of wind speed in the field of wind energy system. TIDEE 15: 439-457.

5. Madhiarasan M, Deepa SN (2016) Performance investigation of six artificial neural networks for different time scale wind speed forecasting in three wind farms of coimbatore region. Int J Innovation Sci Res 23: 380-411.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3