Design, Assessment, and Modeling of Multi-Input Single-Output Neural Network Types for the Output Power Estimation in Wind Turbine Farms

Author:

Sharkawy Abdel-Nasser12ORCID,Ameen Asmaa13,Mohamed Shuaiby45ORCID,Abdel-Jaber Gamal16,Hamdan I.7ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt

2. Mechanical Engineering Department, College of Engineering, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia

3. Artificial intelligence Department, Faculty of Computers and Artificial Intelligence, South Valley University, Hurghada 84511, Egypt

4. Mechatronics Engineering Department, Faculty of Engineering, Assiut University, Assiut 71515, Egypt

5. Department of Mechanical Engineering, Hanbat National University, Deajeon 34158, Republic of Korea

6. New Assiut University of Technology (NAUT), Assiut 71684, Egypt

7. Department of Electrical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt

Abstract

The use of renewable energy, especially wind power, is the most practical way to mitigate the environmental effects that various countries around the world are suffering from. To meet the growing need for electricity, wind energy is, nevertheless, being used more and more. Researchers have come to understand that a near-perfect output power estimate must be sacrificed. Variations in the weather influence wind energy, including wind speed, surface temperature, and pressure. In this study, the wind turbine output power was estimated using three approaches of artificial neural networks (ANNs). The multilayer feed-forward neural network (MLFFNN), cascaded forward neural network (CFNN), and recurrent neural network (RNN) were employed for estimating the entire output power of wind turbine farms in Egypt. Therefore, each built NN made use of wind speed, surface temperature, and pressure as inputs, while the wind turbine’s output power served as its output. The data of 62 days were gathered from wind turbine farm for the training and efficiency examination techniques of every implemented ANN. The first 50 days’ worth of data were utilized to train the three created NNs, and the last 12 days’ worth of data were employed to assess the efficiency and generalization capacity of the trained NNs. The outcomes showed that the trained NNs were operating successfully and effectively estimated power. When analyzed alongside the other NNs, the RNN produced the best main square error (MSE) of 0.00012638, while the CFNN had the worst MSE of 0.00050805. A comparison between the other relevant research studies and our suggested approach was created. This comparison led us to the conclusion that the recommended method was simpler and had a lower MSE than the others. Additionally, the generalization ability was assessed and validated using the approved methodology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3