Research on reinforcement learning based on PPO algorithm for human-machine intervention in autonomous driving

Author:

Shi Gaosong1,Zhao Qinghai12,Wang Jirong1,Dong Xin1

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China

2. National Engineering Research Center for Intelligent Electrical Vehicle Power System, Qingdao 266071, China

Abstract

<abstract> <p>Given the current limitations in intelligence and processing capabilities, machine learning systems are yet unable to fully tackle diverse scenarios, thereby restricting their potential to completely substitute for human roles in practical applications. Recognizing the robustness and adaptability demonstrated by human drivers in complex environments, autonomous driving training has incorporated driving intervention mechanisms. By integrating these interventions into Proximal Policy Optimization (PPO) algorithms, it becomes possible for drivers to intervene and rectify vehicles' irrational behaviors when necessary, during the training process, thereby significantly accelerating the enhancement of model performance. A human-centric experiential replay mechanism has been developed to increase the efficiency of utilizing driving intervention data. To evaluate the impact of driving intervention on the performance of intelligent agents, experiments were conducted across four distinct intervention frequencies within scenarios involving lane changes and navigation through congested roads. The results demonstrate that the bespoke intervention mechanism markedly improves the model's performance in the initial stages of training, enabling it to overcome local optima through timely driving interventions. Although an increase in intervention frequency typically results in improved model performance, an excessively high intervention rate can detrimentally affect the model's efficiency. To assess the practical applicability of the algorithm, a comprehensive testing scenario that includes lane changes, traffic signals, and congested road sections was devised. The performance of the trained model was evaluated under various traffic conditions. The outcomes reveal that the model can adapt to different traffic flows, successfully and safely navigate the testing segment, and maintain speeds close to the target. These findings highlight the model's robustness and its potential for real-world application, emphasizing the critical role of human intervention in enhancing the safety and reliability of autonomous driving systems.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3