Bifurcation and negative self-feedback mechanisms for enhanced spike-timing precision of inhibitory interneurons

Author:

Jia Yanbing1,Gu Huaguang2,Wang Xianjun3,Li Yuye4,Zhou Chunhuizi1

Affiliation:

1. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

3. School of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang 453003, China

4. College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China

Abstract

<abstract> <p>A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3