Dual-process system based on mixed semantic fusion for Chinese medical knowledge-based question answering

Author:

Wang Meiling1,He Xiaohai1,Zhang Zhao2,Liu Luping3,Qing Linbo1,Liu Yan4

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

2. Sichuan Rongke Huaxin Technology Co., LTD, Chengdu, China

3. Bytedance, Shenzhen, China

4. Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Sichuan, China

Abstract

<abstract><p>Chinese medical knowledge-based question answering (cMed-KBQA) is a vital component of the intelligence question-answering assignment. Its purpose is to enable the model to comprehend questions and then deduce the proper answer from the knowledge base. Previous methods solely considered how questions and knowledge base paths were represented, disregarding their significance. Due to entity and path sparsity, the performance of question and answer cannot be effectively enhanced. To address this challenge, this paper presents a structured methodology for the cMed-KBQA based on the cognitive science dual systems theory by synchronizing an observation stage (System 1) and an expressive reasoning stage (System 2). System 1 learns the question's representation and queries the associated simple path. Then System 2 retrieves complicated paths for the question from the knowledge base by using the simple path provided by System 1. Specifically, System 1 is implemented by the entity extraction module, entity linking module, simple path retrieval module, and simple path-matching model. Meanwhile, System 2 is performed by using the complex path retrieval module and complex path-matching model. The public CKBQA2019 and CKBQA2020 datasets were extensively studied to evaluate the suggested technique. Using the metric average F1-score, our model achieved 78.12% on CKBQA2019 and 86.60% on CKBQA2020.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3