Author:
Liu Shi,Li Kaiyang,Wang Yaoying,Zhu Tianyou,Li Jiwei,Chen Zhenyu
Abstract
<abstract><p>Knowledge graph embedding aims to learn representation vectors for the entities and relations. Most of the existing approaches learn the representation from the structural information in the triples, which neglects the content related to the entity and relation. Though there are some approaches proposed to exploit the related multimodal content to improve knowledge graph embedding, such as the text description and images associated with the entities, they are not effective to address the heterogeneity and cross-modal correlation constraint of different types of content and network structure. In this paper, we propose a multi-modal content fusion model (MMCF) for knowledge graph embedding. To effectively fuse the heterogenous data for knowledge graph embedding, such as text description, related images and structural information, a cross-modal correlation learning component is proposed. It first learns the intra-modal and inter-modal correlation to fuse the multimodal content of each entity, and then they are fused with the structure features by a gating network. Meanwhile, to enhance the features of relation, the features of the associated head entity and tail entity are fused to learn relation embedding. To effectively evaluate the proposed model, we compare it with other baselines in three datasets, i.e., FB-IMG, WN18RR and FB15k-237. Experiment result of link prediction demonstrates that our model outperforms the state-of-the-art in most of the metrics significantly, implying the superiority of the proposed method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference48 articles.
1. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in 2008 ACM SIGMOD International Conference on Management of Data (SIGKDD), (2008), 1247–1250. https://doi.org/10.1145/1376616.1376746
2. F. M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in 2007 16th International Conference on World Wide Web (WWW), (2007), 697–706. https://doi.org/10.1145/1242572.1242667
3. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, et al., Dbpedia–a large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web, 6 (2015), 167–195. https://doi.org/10.3233/SW-140134
4. M. Wang, X. He, Z. Zhang, L. Liu, L. Qing, Y. Liu, Dual-process system based on mixed semantic fusion for Chinese medical knowledge-based question answering, Math. Biosci. Eng., 20 (2023), 4912–4939. https://doi.org/10.3934/mbe.2023228
5. Z. Zheng, X. Si, F. Li, E. Y. Chang, X. Zhu, Entity disambiguation with freebase, in 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, (2012), 82–89. https://doi.org/10.1109/WI-IAT.2012.26
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献