Artificial intelligence for video game visualization, advancements, benefits and challenges
-
Published:2023
Issue:8
Volume:20
Page:15345-15373
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Wu Yueliang1, Yi Aolong1, Ma Chengcheng1, Chen Ling2
Affiliation:
1. School of Architecture and Art Design, Hunan University of Science and Technology, Xiangtan 411100, China 2. College of Engineering and Design, Hunan Normal University, Changsha 410081, China
Abstract
<abstract><p>In recent years, the field of artificial intelligence (AI) has witnessed remarkable progress and its applications have extended to the realm of video games. The incorporation of AI in video games enhances visual experiences, optimizes gameplay and fosters more realistic and immersive environments. In this review paper, we systematically explore the diverse applications of AI in video game visualization, encompassing machine learning algorithms for character animation, terrain generation and lighting effects following the PRISMA guidelines as our review methodology. Furthermore, we discuss the benefits, challenges and ethical implications associated with AI in video game visualization as well as the potential future trends. We anticipate that the future of AI in video gaming will feature increasingly sophisticated and realistic AI models, heightened utilization of machine learning and greater integration with other emerging technologies leading to more engaging and personalized gaming experiences.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference133 articles.
1. C. Fairclough, M. Fagan, B. Mac Namee, P. Cunningham, Research Directions for AI in Computer Games, 2001. Available from: http://hdl.handle.net/2262/13098. 2. M. Waltham, D. Moodley, An analysis of artificial intelligence techniques in multiplayer online battle arena game environments, in Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information, (2016), 1–7. https://doi.org/10.1145/2987491.2987513 3. Y. Shi, H. Li, X. Fu, R. Luan, Y. Wang, N. Wang, et al., Self-powered difunctional sensors based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling, Nano Energy, 110 (2023), 108339. https://doi.org/10.1016/j.nanoen.2023.108339 4. C. Davis, J. Collins, J. Fraser, H. Zhang, S. Yao, E. Lattanzio, et al., Cave-VR and unity game engine for visualizing city scale 3d meshes, in 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), IEEE, (2022), 733–734. https://doi.org/10.1109/CCNC49033.2022.9700515 5. Y. J. Lee, I. Baek, U. Jo, J. Kim, J. Bae, K. Jeong, et al., Self-supervised contrastive learning for predicting game strategies, in IntelliSys 2022: Intelligent Systems and Applications, Springer, (2023), 136–147. https://doi.org/10.1007/978-3-031-16072-1_10
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|