Author:
Zhou Zhen,Geng Chenchen,Qi Buhu,Meng Aiwen,Xiao Jinzhuang
Abstract
<abstract>
<p>In order to obtain an optimal trajectory for indoor AGV, this paper combined an improved ACO and fuzzy DWA (IACO-DWA) algorithm, which can provide an optimal path with collision-free under higher optimization efficiency. The highlights of this paper are detailed as follows: Firstly, an improved adaptive pseudo-random transition strategy is adopted in the state transition probability with an angle factor. A reward and punishment mechanism is introduced in the pheromone updating strategy, then a path optimization strategy called IACO is proposed for the more optimized path. Secondly, IDWA adopted three fuzzy controllers of direction, security and adjustment coefficients through evaluating directional and safety principles, then improving the angular velocity by processing the linear velocity with linear normalization. By adapting to the changes of the environment, the IDWA parameters can be dynamically adjusted to ensure the optimal running speed and reasonable path of AGV. Thirdly, aiming to deal with the path-planning problem in complex environments, we combined IACO with IDWA, the hybrid algorithm involves dividing the globally optimal path obtained from IACO planning into multiple virtual sub-target points. IDWA completes the path planning by switching between these local target points, thereby improving the efficiency of the path planning. Finally, simulations is verified by Matlab and experiment results on the QBot2e platform are given to verify IACO-DWA algorithm's effectiveness and high performance.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献