Multi-step attack detection in industrial networks using a hybrid deep learning architecture

Author:

Jamal Muhammad Hassan1,Khan Muazzam A12,Ullah Safi1,Alshehri Mohammed S.3,Almakdi Sultan3,Rashid Umer1,Alazeb Abdulwahab3,Ahmad Jawad4

Affiliation:

1. Department of Computer Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. ICESCO Chair Big Data Analytics and Edge Computing, Quaid-i-Azam University, Islamabad 45320, Pakistan

3. Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

4. School of Computing, Engineering and the Built Environment, Edinburgh Napier University, EH10 5DT, Edinburgh, UK

Abstract

<abstract><p>In recent years, the industrial network has seen a number of high-impact attacks. To counter these threats, several security systems have been implemented to detect attacks on industrial networks. However, these systems solely address issues once they have already transpired and do not proactively prevent them from occurring in the first place. The identification of malicious attacks is crucial for industrial networks, as these attacks can lead to system malfunctions, network disruptions, data corruption, and the theft of sensitive information. To ensure the effectiveness of detection in industrial networks, which necessitate continuous operation and undergo changes over time, intrusion detection algorithms should possess the capability to automatically adapt to these changes. Several researchers have focused on the automatic detection of these attacks, in which deep learning (DL) and machine learning algorithms play a prominent role. This study proposes a hybrid model that combines two DL algorithms, namely convolutional neural networks (CNN) and deep belief networks (DBN), for intrusion detection in industrial networks. To evaluate the effectiveness of the proposed model, we utilized the Multi-Step Cyber Attack (MSCAD) dataset and employed various evaluation metrics.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference67 articles.

1. R. M. Balajee, M. K. J. Kannan, Intrusion detection on AWS cloud through hybrid deep learning algorithm, Electronics, 12 (2023), 1423. https://doi.org/10.3390/electronics12061423

2. M. J. Kaur, V. P. Mishra, P. Maheshwari, The convergence of digital twin, IoT, and machine learning: transforming data into action, in Digital Twin Technologies and Smart Cities, Springer, (2020), 3–17. https://link.springer.com/chapter/10.1007/978-3-030-18732-3_1

3. O. Abualghanam, H. Alazzam, B. Elshqeirat, M. Qatawneh, M. A. Almaiah, Real-time detection system for data exfiltration over DNS tunneling using machine learning, Electronics, 12 (2020), 1467. https://doi.org/10.3390/electronics12061467

4. B. Axelsson, G. Easton, Industrial Networks (Routledge Revivals): A New View of Reality, Routledge, 1992.

5. P. C. Smith, L. Hellman, Small Group Analysis in Industrial Networks, Routledge, 1992.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3