Deep transfer learning for IDC breast cancer detection using fast AI technique and Sqeezenet architecture

Author:

Chaudhury Sushovan1,Sau Kartik1,Khan Muhammad Attique2,Shabaz Mohammad3

Affiliation:

1. University of Engineering and Management, Kolkata, Department of Computer Science and Engineering, University Area, Plot No. III, B/5, New Town Rd, Action Area III, Newtown, Kolkata, West Bengal 700160, India

2. Department of Computer Science, HITEC University, Taxila, Pakistan

3. Model Institute of Engineering and Technology Jammu, J&K, India

Abstract

<abstract> <p>One of the most effective approaches for identifying breast cancer is histology, which is the meticulous inspection of tissues under a microscope. The kind of cancer cells, or whether they are cancerous (malignant) or non-cancerous, is typically determined by the type of tissue that is analyzed by the test performed by the technician (benign). The goal of this study was to automate IDC classification within breast cancer histology samples using a transfer learning technique. To improve our outcomes, we combined a Gradient Color Activation Mapping (Grad CAM) and image coloring mechanism with a discriminative fine-tuning methodology employing a one-cycle strategy using FastAI techniques. There have been lots of research studies related to deep transfer learning which use the same mechanism, but this report uses a transfer learning mechanism based on lightweight Squeeze Net architecture, a variant of CNN (Convolution neural network). This strategy demonstrates that fine-tuning on Squeeze Net makes it possible to achieve satisfactory results when transitioning generic features from natural images to medical images.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3