Enhancing breast ultrasound segmentation through fine-tuning and optimization techniques: Sharp attention UNet

Author:

Khaledyan DonyaORCID,Marini Thomas J.,M. Baran Timothy,O’Connell Avice,Parker Kevin

Abstract

Segmentation of breast ultrasound images is a crucial and challenging task in computer-aided diagnosis systems. Accurately segmenting masses in benign and malignant cases and identifying regions with no mass is a primary objective in breast ultrasound image segmentation. Deep learning (DL) has emerged as a powerful tool in medical image segmentation, revolutionizing how medical professionals analyze and interpret complex imaging data. The UNet architecture is a highly regarded and widely used DL model in medical image segmentation. Its distinctive architectural design and exceptional performance have made it popular among researchers. With the increase in data and model complexity, optimization and fine-tuning models play a vital and more challenging role than before. This paper presents a comparative study evaluating the effect of image preprocessing and different optimization techniques and the importance of fine-tuning different UNet segmentation models for breast ultrasound images. Optimization and fine-tuning techniques have been applied to enhance the performance of UNet, Sharp UNet, and Attention UNet. Building upon this progress, we designed a novel approach by combining Sharp UNet and Attention UNet, known as Sharp Attention UNet. Our analysis yielded the following quantitative evaluation metrics for the Sharp Attention UNet: the Dice coefficient, specificity, sensitivity, and F1 score values obtained were 0.93, 0.99, 0.94, and 0.94, respectively. In addition, McNemar’s statistical test was applied to assess significant differences between the approaches. Across a number of measures, our proposed model outperformed all other models, resulting in improved breast lesion segmentation.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference82 articles.

1. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.;F Bray;CA: a cancer journal for clinicians.,2018

2. Breast cancer statistics, 2019.;CE DeSantis;CA: a cancer journal for clinicians.,2019

3. Cone-Beam Breast Computed Tomography: Time for a New Paradigm in Breast Imaging.;AM O’Connell;J Clin Med.,2021

4. Breast Cancer: Epidemiology and Etiology;Z Tao;Cell biochemistry and biophysics,2015

5. Swedish Two-County Trial: Impact of Mammographic Screening on Breast Cancer Mortality during 3 Decades.;L Tabár,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3