Automatic detection method of epileptic seizures based on IRCMDE and PSO-SVM

Author:

Liu Bei12,Bai Hongzi1,Chen Wei1,Chen Huaquan1,Zhang Zhen3

Affiliation:

1. College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China

2. Hunan University of Arts and Science, Hunan Province Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology, Changde 415000, China

3. Furong College, Hunan University of Arts and Science, Changde 415000, China

Abstract

<abstract> <p>Multi-scale dispersion entropy (MDE) has been widely used to extract nonlinear features of electroencephalography (EEG) signals and realize automatic detection of epileptic seizures. However, information loss and poor robustness will exist when MDE is used to measure the nonlinear complexity of the time sequence. To solve the above problems, an automatic detection method for epilepsy was proposed, based on improved refined composite multi-scale dispersion entropy (IRCMDE) and particle swarm algorithm optimization support vector machine (PSO-SVM). First, the refined composite multi-scale dispersion entropy (RCMDE) is introduced, and then the segmented average calculation of coarse-grained sequence is replaced by local maximum calculation to solve the problem of information loss. Finally, the entropy value is normalized to improve the robustness of characteristic parameters, and IRCMDE is formed. The simulated results show that when examining the complexity of the simulated signal, IRCMDE can eliminate the issue of information loss compared with MDE and RCMDE and weaken the entropy change caused by different parameter selections. In addition, IRCMDE is used as the feature parameter of the epileptic EEG signal, and PSO-SVM is used to identify the feature parameters. Compared with MDE-PSO-SVM, and RCMDE-PSO-SVM methods, IRCMDE-PSO-SVM can obtain more accurate recognition results.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3