Bird sound recognition based on adaptive frequency cepstral coefficient and improved support vector machine using a hunter-prey optimizer

Author:

Chen Xiao12,Zeng Zhaoyou1

Affiliation:

1. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

<abstract> <p>Bird sound recognition is crucial for bird protection. As bird populations have decreased at an alarming rate, monitoring and analyzing bird species helps us observe diversity and environmental adaptation. A machine learning model was used to classify bird sound signals. To improve the accuracy of bird sound recognition in low-cost hardware systems, a recognition method based on the adaptive frequency cepstrum coefficient and an improved support vector machine model using a hunter-prey optimizer was proposed. First, in sound-specific feature extraction, an adaptive factor is introduced into the extraction of the frequency cepstrum coefficients. The adaptive factor was used to adjust the continuity, smoothness and shape of the filters. The features in the full frequency band are extracted by complementing the two groups of filters. Then, the feature was used as the input for the following support vector machine classification model. A hunter-prey optimizer algorithm was used to improve the support vector machine model. The experimental results show that the recognition accuracy of the proposed method for five types of bird sounds is 93.45%, which is better than that of state-of-the-art support vector machine models. The highest recognition accuracy is obtained by adjusting the adaptive factor. The proposed method improved the accuracy of bird sound recognition. This will be helpful for bird recognition in various applications.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3