Tetrahedral sheets of clay minerals and their edge valency-based entropy measures
-
Published:2023
Issue:5
Volume:20
Page:8068-8084
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Huang Qingqun1, Labba Muhammad2, Azeem Muhammad2, Jamil Muhammad Kamran2, Luo Ricai1
Affiliation:
1. School of Mathematics and Physics, Hechi University, Yizhou, Guangxi 456300, China 2. Department of Mathematics, Riphah International University Lahore, Pakistan
Abstract
<abstract><p>Humanity has always benefited from an intercapillary study in the quantification of natural occurrences in mathematics and other pure scientific fields. Graph theory was extremely helpful to other studies, particularly in the applied sciences. Specifically, in chemistry, graph theory made a significant contribution. For this, a transformation is required to create a graph representing a chemical network or structure, where the vertices of the graph represent the atoms in the chemical compound and the edges represent the bonds between the atoms. The quantity of edges that are incident to a vertex determines its valency (or degree) in a graph. The degree of uncertainty in a system is measured by the entropy of a probability. This idea is heavily grounded in statistical reasoning. It is primarily utilized for graphs that correspond to chemical structures. The development of some novel edge-weighted based entropies that correspond to valency-based topological indices is made possible by this research. Then these compositions are applied to clay mineral tetrahedral sheets. Since they have been in use for so long, corresponding indices are thought to be the most effective methods for quantifying chemical graphs. This article develops multiple edge degree-based entropies that correlate to the indices and determines how to modify them to assess the significance of each type.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference46 articles.
1. R. Luo, A. Khalil, A. Ahmad, M. Azeem, I. Gafurjan, M. F. Nadeem, Computing The partition dimension of certain families of toeplitz graph, Front. Comput. Neurosci., 2022 (2022), 1–7. https://doi.org/10.3389/fncom.2022.959105 2. Z. Chu, M. K. Siddiqui, S. Manzoor, S. A. K. Kirmani, M. F. Hanif, M. H. Muhammad, On rational curve fitting between topological indices and entropy measures for graphite carbon nitride, Polycyclic Aromat. Compd., 2022 (2022), 1–18. 3. I. Tugal, D. Murat, Çizgelerde yapısal karmaşıklığın olçülmesinde farklı parametrelerin kullanımı, Muş Alparslan Üniv. Mühendislik Mimarlık Fak. Derg., 2022 (2022), 22–29. 4. M. A. Alam, M. U. Ghani, M. Kamran, Degree-based entropy for a non-kekulean benzenoid graph, J. Math., 2022 (2022). 5. X. Wang, M. K. Siddiqui, S. A. K. Kirmani, S. Manzoor, S. Ahmad, M. Dhlamini, On topological analysis of entropy measures for silicon carbides networks, Complexity, 2021 (2021). https://doi.org/10.1155/2021/4178503
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|