Affiliation:
1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
2. Zhejiang JIALIFT Warehouse Equipment Co., Ltd., Huzhou 313104, China
Abstract
<abstract><p>The direct yaw-moment control (DYC) system consisting of an upper controller and a lower controller is developed on the basis of sliding mode theory and adaptive control technique. First, the two-degree of freedom (2-DOF) model is utilized to calculate the ideal yaw rate. Then, the seven-degree of freedom (7-DOF) electric vehicle model is given to design the upper controller by employing first-order sliding mode (FOSM) method, which is constructed to guarantee the actual yaw rate to approach the ideal value and gain the additional yaw moment. On this basis, an adaptive first-order sliding mode (AFOSM) controller is designed to enhance the system robustness against probable modelling error and parametric uncertainties. In order to mitigate the chattering issue present in the FOSM controller, a novel adaptive super-twisting sliding mode (ASTSM) controller is proposed for the design of DYC. Furthermore, the lower controller converting the additional yaw moment into driving or braking torque acting on each wheel is also developed. Finally, The simulation results indicate that the proposed DYC system can improve the electric vehicle driving stability effectively.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference49 articles.
1. L. Ma, K. Mei, S. Ding, T. Pan, Design of adaptive fuzzy fixed-time HOSM controller subject to asymmetric output constraints, IEEE Trans. Fuzzy Syst., 2023 (2023). https://doi.org/10.1109/TFUZZ.2023.3241147
2. Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766
3. B. Xu, Q. Jiang, W. Ji, S. Ding, An improved three-vector-based model predictive current control method for surface-mounted PMSM drives, IEEE Trans. Transp. Electrif., 8 (2022), 4418–4430. https://doi.org/10.1109/TTE.2022.3169515
4. Q. K. Hou, S. H. Ding, X. H. Yu, Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer, IEEE Trans. Energy Convers., 36 (2021), 2591–2599. https://doi.org/10.1109/tec.2020.2985054
5. Y. Wu, L. F. Wang, J. Z. Zhang, F. Li, Robust vehicle yaw stability controlby active front steering with active disturbance rejection controller, in Proceedings of the Institution of Mechanical Engineers Part Ⅰ Journal of Systems and Control Engineering, (2018). https://doi.org/10.1177/0959651818813515
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献