CoT-UNet++: A medical image segmentation method based on contextual transformer and dense connection

Author:

Yin Yijun1,Xu Wenzheng1,Chen Lei1,Wu Hao2

Affiliation:

1. School of Information Science and Engineering, Shandong University, Qingdao 266200, China

2. Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China

Abstract

<abstract> <p>Accurate depiction of individual teeth from CBCT images is a critical step in the diagnosis of oral diseases, and the traditional methods are very tedious and laborious, so automatic segmentation of individual teeth in CBCT images is important to assist physicians in diagnosis and treatment. TransUNet has achieved success in medical image segmentation tasks, which combines the advantages of Transformer and CNN. However, the skip connection taken by TransUNet leads to unnecessary restrictive fusion and also ignores the rich context between adjacent keys. To solve these problems, this paper proposes a context-transformed TransUNet++ (CoT-UNet++) architecture, which consists of a hybrid encoder, a dense connection, and a decoder. To be specific, a hybrid encoder is first used to obtain the contextual information between adjacent keys by CoTNet and the global context encoded by Transformer. Then the decoder upsamples the encoded features by cascading upsamplers to recover the original resolution. Finally, the multi-scale fusion between the encoded and decoded features at different levels is performed by dense concatenation to obtain more accurate location information. In addition, we employ a weighted loss function consisting of focal, dice, and cross-entropy to reduce the training error and achieve pixel-level optimization. Experimental results demonstrate that the proposed CoT-UNet++ method outperforms the baseline models and can obtain better performance in tooth segmentation.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3