Improved UNet with Attention for Medical Image Segmentation

Author:

AL Qurri Ahmed1,Almekkawy Mohamed1ORCID

Affiliation:

1. School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA 16802, USA

Abstract

Medical image segmentation is crucial for medical image processing and the development of computer-aided diagnostics. In recent years, deep Convolutional Neural Networks (CNNs) have been widely adopted for medical image segmentation and have achieved significant success. UNet, which is based on CNNs, is the mainstream method used for medical image segmentation. However, its performance suffers owing to its inability to capture long-range dependencies. Transformers were initially designed for Natural Language Processing (NLP), and sequence-to-sequence applications have demonstrated the ability to capture long-range dependencies. However, their abilities to acquire local information are limited. Hybrid architectures of CNNs and Transformer, such as TransUNet, have been proposed to benefit from Transformer’s long-range dependencies and CNNs’ low-level details. Nevertheless, automatic medical image segmentation remains a challenging task due to factors such as blurred boundaries, the low-contrast tissue environment, and in the context of ultrasound, issues like speckle noise and attenuation. In this paper, we propose a new model that combines the strengths of both CNNs and Transformer, with network architectural improvements designed to enrich the feature representation captured by the skip connections and the decoder. To this end, we devised a new attention module called Three-Level Attention (TLA). This module is composed of an Attention Gate (AG), channel attention, and spatial normalization mechanism. The AG preserves structural information, whereas channel attention helps to model the interdependencies between channels. Spatial normalization employs the spatial coefficient of the Transformer to improve spatial attention akin to TransNorm. To further improve the skip connection and reduce the semantic gap, skip connections between the encoder and decoder were redesigned in a manner similar to that of the UNet++ dense connection. Moreover, deep supervision using a side-output channel was introduced, analogous to BASNet, which was originally used for saliency predictions. Two datasets from different modalities, a CT scan dataset and an ultrasound dataset, were used to evaluate the proposed UNet architecture. The experimental results showed that our model consistently improved the prediction performance of the UNet across different datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3