Improving Surgical Scene Semantic Segmentation through a Deep Learning Architecture with Attention to Class Imbalance

Author:

Urrea Claudio1ORCID,Garcia-Garcia Yainet1ORCID,Kern John1ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170020, Chile

Abstract

This article addresses the semantic segmentation of laparoscopic surgery images, placing special emphasis on the segmentation of structures with a smaller number of observations. As a result of this study, adjustment parameters are proposed for deep neural network architectures, enabling a robust segmentation of all structures in the surgical scene. The U-Net architecture with five encoder–decoders (U-Net5ed), SegNet-VGG19, and DeepLabv3+ employing different backbones are implemented. Three main experiments are conducted, working with Rectified Linear Unit (ReLU), Gaussian Error Linear Unit (GELU), and Swish activation functions. The applied loss functions include Cross Entropy (CE), Focal Loss (FL), Tversky Loss (TL), Dice Loss (DiL), Cross Entropy Dice Loss (CEDL), and Cross Entropy Tversky Loss (CETL). The performance of Stochastic Gradient Descent with momentum (SGDM) and Adaptive Moment Estimation (Adam) optimizers is compared. It is qualitatively and quantitatively confirmed that DeepLabv3+ and U-Net5ed architectures yield the best results. The DeepLabv3+ architecture with the ResNet-50 backbone, Swish activation function, and CETL loss function reports a Mean Accuracy (MAcc) of 0.976 and Mean Intersection over Union (MIoU) of 0.977. The semantic segmentation of structures with a smaller number of observations, such as the hepatic vein, cystic duct, Liver Ligament, and blood, verifies that the obtained results are very competitive and promising compared to the consulted literature. The proposed selected parameters were validated in the YOLOv9 architecture, which showed an improvement in semantic segmentation compared to the results obtained with the original architecture.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3