Author:
Liu Xinyu,Lv Zimeng,Ding Yuting
Abstract
<abstract><p>Since the COVID-19 outbreak began in early 2020, it has spread rapidly and threatened public health worldwide. Vaccination is an effective way to control the epidemic. In this paper, we model a $ SAIM $ equation. Our model involves vaccination and the time delay for people to change their willingness to be vaccinated, which is influenced by media coverage. Second, we theoretically analyze the existence and stability of the equilibria of our model. Then, we study the existence of Hopf bifurcation related to the two equilibria and obtain the normal form near the Hopf bifurcating critical point. Third, numerical simulations based two groups of values for model parameters are carried out to verify our theoretical analysis and assess features such as stable equilibria and periodic solutions. To ensure the appropriateness of model parameters, we conduct a mathematical analysis of official data. Next, we study the effect of the media influence rate and attenuation rate of media coverage on vaccination and epidemic control. The analysis results are consistent with real-world conditions. Finally, we present conclusions and suggestions related to the impact of media coverage on vaccination and epidemic control.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献