Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer

Author:

Wu Chengxi, ,Dai Yuewei,Shan Liang,Zhu Zhiyu,Wu Zhengtian, ,

Abstract

<abstract><p>In this study, we explore the precise trajectory tracking control problem of autonomous underwater vehicle (AUV) under the disturbance of the underwater environment. First, a model-free adaptive control (MFAC) is designed based on data-driven ideology and a full-form dynamic linearization (FFDL) method is utilized to online estimate time-varying parameter pseudo gradient (PG) to establish an equivalent data model of AUV motion. Second, the iterative extended state observer (IESO) scheme is designed to combine with FFDL-MFAC. Because the proposed novel controller is able to learn from repeated iterations, the proposed novel controller can estimate and compensate the model approximation error produced by external environmental unknown disturbance. Third, three-dimensional motion is decoupled into horizontal and vertical and a multi closed-loop control structure is designed that exhibits faster convergence rate and reduces sensitivity to parameter jumps than single closed-loop system. Finally, two simulation scenarios are designed featuring non external disturbance and Gaussian noise of signal-to-noise ratio of 90 dB. The simulation results reveal the superiority of FFDL. Furthermore, we adpot the technical parameters data of T-SEA I AUV to conduct numerical simulation, aunderwater trajectory as the tracking scenario and set waves to 0.5 m and current to 0.2 m/s to simulate Lv.2 ocean conditions of "International Ocean State Standard". The simulation results demonstrate the effectiveness and robustness of the proposed tracking control algorithm.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3