A fault diagnostic approach based on PSO-HMM for underwater thrusters

Author:

Chu Zhenzhong12,Gu Zhenhao1,Li Zhiqiang1,Chen Yunsai3,Zhang Mingjun4

Affiliation:

1. Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China

2. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

3. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

4. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

<abstract> <p>In this paper, we describe an approach based on improved Hidden Markov Model (HMM) for fault diagnosis of underwater thrusters in complex marine environments. First, considering the characteristics of thruster data, we design a three-step data preprocessing method. Then, we propose a fault classification method based on HMMs trained by Particle Swarm Optimization (PSO) for better performance than methods based on vanilla HMMs. Lastly, we verify the effectiveness of the proposed approach using thruster samples collected from a fault emulation experimental platform. The experiments show that the PSO-based training method for HMM improves the accuracy of thruster fault diagnosis by 17.5% compared with vanilla HMMs, proving the effectiveness of the method.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3