Author:
Zhou Yajing,Long Xinyu,Sun Mingwei,Chen Zengqiang
Abstract
<abstract>
<p>Rolling bearings are the core components of mechanical and electrical systems. A practical fault diagnosis scheme is the key to ensure operational safety. There are excessive characteristic parameters with remarkable randomness and severe signal coupling in the rolling bearing operation, which makes the fault diagnosis to be challenging. To deal with this problem, the Gramian angular field (GAF) and DenseNet are combined to perform feature extraction and fault diagnosis. The GAF can convert 1-dimensional time series into an image, which can guarantee the completeness of feature information without temporal dependence. The GAF images are then trained by using the DenseNet to generate a data set network. In this process, the transfer learning (TL), which can solve the problem of insufficient samples, is integrated to the DenseNet to enhance its extensibility. The comparative simulations are carried out to illustrate the effectiveness of the proposed method.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献