Effects of dispersed fibres in myocardial mechanics, Part I: passive response

Author:

Guan Debao1,Mei Yuqian2,Xu Lijian3,Cai Li4,Luo Xiaoyu1,Gao Hao1

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, UK

2. School of Medical Imaging, North Sichuan Medical College, Sichuan, China

3. Centre for Perceptual and Interactive Intelligence, The Chinese University of Hong Kong, Hong Kong, China

4. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, China

Abstract

<abstract><p>It is widely acknowledged that an imbalanced biomechanical environment can have significant effects on myocardial pathology, leading to adverse remodelling of cardiac function if it persists. Accurate stress prediction essentially depends on the strain energy function which should have competent descriptive and predictive capabilities. Previous studies have focused on myofibre dispersion, but not on fibres along other directions. In this study, we will investigate how fibre dispersion affects myocardial biomechanical behaviours by taking into account both the myofibre dispersion and the sheet fibre dispersion, with a focus on the sheet fibre dispersion. Fibre dispersion is incorporated into a widely-used myocardial strain energy function using the discrete fibre bundle approach. We first study how different dispersion affects the descriptive capability of the strain energy function when fitting to ex vivo experimental data, and then the predictive capability in a human left ventricle during diastole. Our results show that the chosen strain energy function can achieve the best goodness-of-fit to the experimental data by including both fibre dispersion. Furthermore, noticeable differences in stress can be found in the LV model. Our results may suggest that it is necessary to include both dispersion for myofibres and the sheet fibres for the improved descriptive capability to the ex vivo experimental data and potentially more accurate stress prediction in cardiac mechanics.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3