Abstract
<abstract><p>The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model $ \frac{dw}{dt} = aw^{\frac{2}{3}}-bw $, where $ w $ denotes mass and $ a > 0 $ and $ b > 0 $ are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference27 articles.
1. L. V. Bertalanffy, Quantitative laws in metabolism and growth, Quarterly Rev. Biol., 32 (1957), 217–231.
2. M. Kühleitner, N. Brunner, W. Nowak, K. Renner-Martin, K. Scheicher, Best-fitting growth curves of the von Bertalanffy-Pütter type, Poultry Sci., 98 (2019), 3587–3592. https://doi.org/10.3382/ps/pez122
3. P. Román-Román, D. Romero, F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theoret. Biol., 263 (2010), 59–69. https://doi.org/10.1016/j.jtbi.2009.12.009
4. J. Calatayud, T. Caraballo, J. C. Cortés, M. Jornet, Mathematical methods for the randomized non-autonomous Bertalanffy model, Electron. J. Differ. Equat., 2020, 50.
5. M. P. Edwards, R. S. Anderssen, Symmetries and solutions of the non-autonomous von Bertalanffy equation, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1062–1067. https://doi.org/10.1016/j.cnsns.2014.08.033
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献