Ulam type stability for von Bertalanffy growth model with Allee effect

Author:

Kondo Masumi,Onitsuka Masakazu

Abstract

<abstract><p>In many studies dealing with mathematical models, the subject is examining the fitting between actual data and the solution of the mathematical model by applying statistical processing. However, if there is a solution that fluctuates greatly due to a small perturbation, it is expected that there will be a large difference between the actual phenomenon and the solution of the mathematical model, even in a short time span. In this study, we address this concern by considering Ulam stability, which is a concept that guarantees that a solution to an unperturbed equation exists near the solution to an equation with bounded perturbations. Although it is known that Ulam stability is guaranteed for the standard von Bertalanffy growth model, it remains unsolved for a model containing the Allee effect. This paper investigates the Ulam stability of a von Bertalanffy growth model with the Allee effect. In a sense, we obtain results that correspond to conditions of the Allee effect being very small or very large. In particular, a more preferable Ulam constant than the existing result for the standard von Bertalanffy growth model, is obtained as the Allee effect approaches zero. In other words, this paper even improves the proof of the result in the absence of the Allee effect. By guaranteeing the Ulam stability of the von Bertalanffy growth model with Allee effect, the stability of the model itself is guaranteed, and, even if a small perturbation is added, it becomes clear that even a small perturbation does not have a large effect on the solutions. Several examples and numerical simulations are presented to illustrate the obtained results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3