Solving the TSP by the AALHNN algorithm

Author:

Hu Yun,Duan Qianqian

Abstract

<abstract> <p>It is prone to get stuck in a local minimum when solving the Traveling Salesman Problem (TSP) by the traditional Hopfield neural network (HNN) and hard to converge to an efficient solution, resulting from the defect of the penalty method used by the HNN. In order to mend this defect, an accelerated augmented Lagrangian Hopfield neural network (AALHNN) algorithm was proposed in this paper. This algorithm gets out of the dilemma of penalty method by Lagrangian multiplier method, ensuring that the solution to the TSP is undoubtedly efficient. The second order factor added in the algorithm stabilizes the neural network dynamic model of the problem, thus improving the efficiency of solution. In this paper, when solving the TSP by AALHNN, some changes were made to the TSP models of Hopfield and Tank. Say, constraints of TSP are multiplied by Lagrange multipliers and augmented Lagrange multipliers respectively, The augmented Lagrange function composed of path length function can ensure robust convergence and escape from the local minimum trap. The Lagrange multipliers are updated by using nesterov acceleration technique. In addition, it was theoretically proved that the extremum obtained by this improved algorithm is the optimal solution of the initial problem and the approximate optimal solution of the TSP was successfully obtained several times in the simulation experiment. Compared with the traditional HNN, this method can ensure that it is effective for TSP solution and the solution to the TSP obtained is better.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3