Dynamic graph Conv-LSTM model with dynamic positional encoding for the large-scale traveling salesman problem

Author:

Wang Yang,Chen Zhibin

Abstract

<abstract><p>Recent research has showen that deep reinforcement learning (DRL) can be used to design better heuristics for the traveling salesman problem (TSP) on the small scale, but does not do well when generalized to large instances. In order to improve the generalization ability of the model when the nodes change from small to large, we propose a dynamic graph Conv-LSTM model (DGCM) to the solve large-scale TSP. The noted feature of our model is the use of a dynamic encoder-decoder architecture and a convolution long short-term memory network, which enable the model to capture the topological structure of the graph dynamically, as well as the potential relationships between nodes. In addition, we propose a dynamic positional encoding layer in the DGCM, which can improve the quality of solutions by providing more location information. The experimental results show that the performance of the DGCM on the large-scale TSP surpasses the state-of-the-art DRL-based methods and yields good performance when generalized to real-world datasets. Moreover, our model compares favorably to heuristic algorithms and professional solvers in terms of computational time.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air target intent recognition method combining graphing time series and diffusion models;Chinese Journal of Aeronautics;2024-08

2. NeuralGLS: learning to guide local search with graph convolutional network for the traveling salesman problem;Neural Computing and Applications;2023-10-10

3. A hybrid network with spatial attention mechanism for solving large-scale TSP;Third International Conference on Advanced Algorithms and Neural Networks (AANN 2023);2023-10-09

4. Instagram Text Sentiment Analysis Combining Machine Learning and NLP;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-07-03

5. A Reinforcement Learning-driven Iterated Greedy Algorithm for Traveling Salesman Problem;2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3