Modified generalized neo-fuzzy system with combined online fast learning in medical diagnostic task for situations of information deficit

Author:

Bodyanskiy Yevgeniy1,Chala Olha2,Kasatkina Natalia3,Pliss Iryna1

Affiliation:

1. Control systems research laboratory, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

2. Artificial intelligence department, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

3. Division of doctoral and post-graduate, National University of Food Technology, Kyiv, Ukraine

Abstract

<abstract> <p>In the paper, we propose the modified generalized neo-fuzzy system. It is designed to solve the pattern-image recognition task by working with data that are fed to the system in the image form. The neo-fuzzy system can work with small training datasets, where classes can overlap in a features space. The core of the system under consideration is a modification of multidimensional generalized neuro-fuzzy neuron with an additional softmax activation function in the output layer instead of the defuzzification layer and quartic-kernel functions as membership ones. The learning procedure of the system combined cross-entropy criterion optimization using a matrix version of the optimal by speed Kaczmarz-Widrow-Hoff algorithm with the additional filtering (smoothing) properties. In comparison to the well-known systems, the modified neo-fuzzy one provides both numerical and computational implementation simplicity. The computational experiments have proved the effectiveness of the modified generalized neo-fuzzy-neuron, including the situation with shot training datasets.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3