An Ensemble Method for the Analysis of Small Biomedical Data based on a Neural Network Without Training

Author:

Izonin I.V.,Tkachenko R.O.,Semchyshyn O.L.

Abstract

To enhance the accuracy of analyzing short datasets, this paper proposes a novel ensemble learning method that utilizes a single the General Regression Neural Network (GRNN). The core idea behind this method is the synthesis of additional pairs of vectors with different signs around each current vector from the test sample. This is achieved by employing the method of random symmetric perturbations and averaging the prediction outputs for the current vector and all synthesized vectors in its vicinity. Implementing this approach leads to a significant increase in prediction accuracy for short datasets. It achieves error compensation for each pair of addi-tional vectors with different signs and also for the overall prediction result of the current vector and all additional pairs of synthetic vectors created for it. The effectiveness of the proposed method is validated through modeling on a small real-world biomedical dataset, and the optimal parameters have been selected. Comparative analysis with existing GRNN-based me¬thods demonstrates a substantial improvement in accuracy.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3