Author:
Naz Sumera, ,Akram Muhammad,Al-Shamiri Mohammed M. Ali,Khalaf Mohammed M.,Yousaf Gohar, , , , ,
Abstract
<abstract><p>In this article, we introduce the 2-tuple linguistic bipolar fuzzy set (2TLBFS), a new strategy for dealing with uncertainty that incorporates a 2-tuple linguistic term into bipolar fuzzy set. The 2TLBFS is a better way to deal with uncertain and imprecise information in the decision-making environment. We elaborate the operational rules, based on which, the 2-tuple linguistic bipolar fuzzy weighted averaging (2TLBFWA) operator and the 2-tuple linguistic bipolar fuzzy weighted geometric (2TLBFWG) operator are presented to fuse the 2TLBF numbers (2TLBFNs). The Heronian mean (HM) operator, which can reflect the internal correlation between attributes and their influence on decision results, is integrated into the 2TLBF environment to analyze the effect of the correlation between decision factors on decision results. Initially, the generalized 2-tuple linguistic bipolar fuzzy Heronian mean (G2TLBFHM) operator and generalized 2-tuple linguistic bipolar fuzzy weighted Heronian mean (G2TLBFWHM) operator are proposed and properties are explained. Further, 2-tuple linguistic bipolar fuzzy geometric Heronian mean (2TLBFGHM) operator and 2-tuple linguistic bipolar weighted geometric Heronian mean (2TLBFWGHM) operator are proposed along with some of their desirable properties. Then, an approach to multi-attribute group decision-making (MAGDM) based on the proposed aggregation operators under the 2TLBF framework is developed. At last, a numerical illustration is provided for the selection of the best photovoltaic cell to demonstrate the use of the generated technique and exhibit its adequacy.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference40 articles.
1. Z. Ali, T. Mahmood, K. Ullah, Q. Khan, Einstein geometric aggregation operators using a novel complex interval-valued pythagorean fuzzy setting with application in green supplier chain management, Rep. Mech. Eng., 2 (2021), 105–134. https://doi.org/10.31181/rme2001020105t
2. R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Making Appl. Manage. Eng., 4 (2021), 104–126. https://doi.org/10.31181/dmame2104104s
3. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1996), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
4. K. T. Atanassov, Intuitionistic fuzzy sets, in Intuitionistic Fuzzy Sets, Physica, Heidelberg, (1999), 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1
5. W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, in NAFIPS/IFIS/NASA'94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, (1994), 305–309. https://doi.org/10.1109/IJCF.1994.375115
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献