Spatiotemporal pattern in a neural network with non-smooth memristor

Author:

Shi Xuerong, ,Wang Zuolei,Zhuang Lizhou,

Abstract

<abstract> <p>Considering complicated dynamics of non-smooth memductance function, an improved Hindmarsh-Rose neuron model is introduced by coupling with non-smooth memristor and dynamics of the improved model are discussed. Simulation results suggest that dynamics of the proposed neuron model depends on the external stimuli but not on the initial value for the magnetic flux. Furthermore, a network composed of the improved Hindmarsh-Rose neuron is addressed via single channel coupling method and spatiotemporal patterns of the network are investigated via numerical simulations with no-flux boundary condition. Firstly, development of spiral wave are discussed for different coupling strengths, different external stimuli and various initial value for the magnetic flux. Results suggest that spiral wave can be developed for coupling strength $ 0 &lt; D &lt; 1 $ when the nodes are provided with period-1 dynamics, especially, double-arm spiral wave appear for $ D = 0.4 $.External stimuli changing can make spiral wave collapse and the network demonstrates chaotic state. Alternation of initial value for the magnetic flux hardly has effect on the developed spiral wave. Secondly, formation of target wave are studied for different coupling strengths, different sizes of center area with parameter diversity and various initial value for the magnetic flux. It can be obtained that, for certain size of center area with parameter diversity, target wave can be formed for coupling strength $ 0 &lt; D &lt; 1 $, while for too small size of center area with parameter diversity, target wave can hardly be formed. Change of initial value for the magnetic flux has no effect on the formation of target wave. Research results reveal the spatiotemporal patterns of neuron network to some extent and may provide some suggestions for exploring some disease of neural system.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3