Abstract
Abstract
Background
Electromagnetic induction has recently been considered as an important factor affecting the activity of neurons. However, as an important form of intervention in epilepsy treatment, few people have linked the two, especially the related dynamic mechanisms have not been explained clearly.
Methods
Considering that electromagnetic induction has some brain area dependence, we proposed a modified two-compartment cortical thalamus model and set eight different key bifurcation parameters to study the transition mechanisms of epilepsy. We compared and analyzed the application and getting rid of memristors of single-compartment and coupled models. In particular, we plotted bifurcation diagrams to analyze the dynamic mechanisms behind abundant discharge activities, which mainly involved Hopf bifurcations (HB), fold of cycle bifurcations (LPC) and torus bifurcations (TR).
Results
The results show that the coupled model can trigger more discharge states due to the driving effect between compartments. Moreover, the most remarkable finding of this study is that the memristor shows two sides. On the one hand, it may reduce tonic discharges. On the other hand, it may cause new pathological states.
Conclusions
The work explains the control effect of memristors on different brain regions and lays a theoretical foundation for future targeted therapy. Finally, it is hoped that our findings will provide new insights into the role of electromagnetic induction in absence seizures.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference55 articles.
1. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16(9):1296–313.
2. Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR. Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans Math Phys Eng Sci. 1891;2009(367):1145–61.
3. Marten F, Rodrigues S, Suffczynski P, Richardson MP, Terry JR. Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Phys Rev E. 2009;79(2):021911.
4. Grubov VV, Sitnikova E, Pavlov AN, Koronovskii AA, Hramov AE. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets. Physica A. 2017;486:206–17.
5. Medvedeva TM, Sysoeva MV, Lüttjohann A, van Luijtelaar G, Sysoev IV. Dynamical mesoscale model of absence seizures in genetic models. PLoS ONE. 2020;15(9):e0239125.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献