Abstract
<abstract><p>Using the forward Euler method, we derive a discrete predator-prey system of Gause type with constant-yield prey harvesting and a monotonically increasing functional response in this paper. First of all, a detailed study for the existence and local stability of fixed points of the system is obtained by invoking an important lemma. Mainly, by utilizing the center manifold theorem and the bifurcation theory some sufficient conditions are obtained for the saddle-node bifurcation and the flip bifurcation of this system to occur. Finally, with the use of Matlab software, numerical simulations are carried out to illustrate the theoretical results obtained and reveal some new dynamics of the system-chaos occuring.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献