Affiliation:
1. Department of Big Data Science, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract
In this paper, we use a semi-discretization method to consider the predator–prey model of Leslie type with ratio-dependent simplified Holling type IV functional response. First, we discuss the existence and stability of the positive fixed point in total parameter space. Subsequently, through using the central manifold theorem and bifurcation theory, we obtain sufficient conditions for the flip bifurcation and Neimark–Sacker bifurcation of this system to occur. Finally, the numerical simulations illustrate the existence of Neimark–Sacker bifurcation and obtain some new dynamical phenomena of the system—the existence of a limit cycle. Corresponding biological meanings are also formulated.
Funder
National Natural Science Foundation of China
Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献