Author:
Aloui Lassaad,Tayachi Slim
Abstract
<p style='text-indent:20px;'>We consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation <inline-formula><tex-math id="M1">\begin{document}$ i\partial_t u +\Delta u = \mu |x|^{-b}|u|^\alpha u,\; u(0)\in H^s({\mathbb R}^N),\; N\geq 1,\; \mu\in {\mathbb C},\; \; b>0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \alpha>0. $\end{document}</tex-math></inline-formula> Only partial results are known for the local existence in the subcritical case <inline-formula><tex-math id="M3">\begin{document}$ \alpha<(4-2b)/(N-2s) $\end{document}</tex-math></inline-formula> and much more less in the critical case <inline-formula><tex-math id="M4">\begin{document}$ \alpha = (4-2b)/(N-2s). $\end{document}</tex-math></inline-formula> In this paper, we develop a local well-posedness theory for the both cases. In particular, we establish new results for the continuous dependence and for the unconditional uniqueness. Our approach provides simple proofs and allows us to obtain lower bounds of the blowup rate and of the life span. The Lorentz spaces and the Strichartz estimates play important roles in our argument. In particular this enables us to reach the critical case and to unify results for <inline-formula><tex-math id="M5">\begin{document}$ b = 0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b>0. $\end{document}</tex-math></inline-formula></p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献