Author:
Colombo Giovanni,Gidoni Paolo,Vilches Emilio
Abstract
<p style='text-indent:20px;'>We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger <inline-formula><tex-math id="M1">\begin{document}$ W^{1,2} $\end{document}</tex-math></inline-formula> convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. J. Andres.Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.
2. J. Andres, D. Bednařík, K. Pastor.On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.
3. T. H. Cao, G. Colombo, B. S. Mordukhovich, D. Nguyen.Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.
4. G. Colombo, P. Gidoni.On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.
5. G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献