Limit cycles for dynamic crawling locomotors with periodic prescribed shape

Author:

Gidoni Paolo,Margheri Alessandro,Rebelo Carlota

Abstract

AbstractWe study the asymptotic evolution of a family of dynamic models of crawling locomotion, with the aim to introduce a well-posed characterization of a gait as a limit behaviour. The locomotors, which might have a discrete or continuous body, move on a line with a periodic prescribed shape change, and might possibly be subject to external forcing (e.g. crawling on a slope). We discuss how their behaviour is affected by different types of friction forces, including also set-valued ones such as dry friction. We show that, under mild natural assumptions, the dynamics always converge to a relative periodic solution. The asymptotic average velocity of the crawler yet might still depend on its initial state, so we provide additional assumption for its uniqueness. In particular, we show that the asymptotic average velocity is unique both for strictly monotone friction forces, and also for dry friction, provided in the latter case that the actuation is sufficiently smooth (for discrete models) or that the friction coefficients are always nonzero (for continuous models). We present several examples and counterexamples illustrating the necessity of our assumptions.

Funder

Università degli Studi di Udine

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Physics and Astronomy,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3