The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier-Stokes equations in downwind-matching coordinates

Author:

Donatelli Donatella1,Juhász Nóra2

Affiliation:

1. Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy

2. Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary

Abstract

<p style='text-indent:20px;'>A widely used approach to mathematically describe the atmosphere is to consider it as a geophysical fluid in a shallow domain and thus to model it using classical fluid dynamical equations combined with the explicit inclusion of an <inline-formula><tex-math id="M1">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula> parameter representing the small aspect ratio of the physical domain. In our previous paper [<xref ref-type="bibr" rid="b14">14</xref>] we proved a weak convergence theorem for the polluted atmosphere described by the Navier-Stokes equations extended by an advection-diffusion equation. We obtained a justification of the generalised hydrostatic limit model including the pollution effect described for the case of classical, east-north-upwards oriented local Cartesian coordinates. Here we give a two-fold improvement of this statement. Firstly, we consider a meteorologically more meaningful coordinate system, incorporate the analytical consequences of this coordinate change into the governing equations, and verify that the weak convergence still holds for this altered system. Secondly, still considering this new, so-called downwind-matching coordinate system, we prove an analogous strong convergence result, which we make complete by providing a closely related existence theorem as well.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference32 articles.

1. R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd edition, Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.

2. I. Ali, S. Kalla, H. Khajah.A partial differential equation related to a problem in atmospheric pollution, Math. Comput. Modelling, 28 (1998), 1-6.

3. J. D. Anderson and J. Wendt, Computational Fluid Dynamics, volume 206, Springer, 1995.

4. G. Andria, A. Lay-Ekuakille and M. Notarnicola, Mathematical Models for Atmospheric and Industrial Pollutant Prediction, In XVI IMEKO World Congress, Vienna, Austria, 2000.

5. P. S. Arya, Introduction to Micrometeorology, volume 79, Elsevier, 2001.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3