A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic

Author:

Abad Amin Reza Kalantari Khalil1,Barzinpour Farnaz1,Pasandideh Seyed Hamid Reza2

Affiliation:

1. Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

2. Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

<p style='text-indent:20px;'>Providing new models or designing sustainable networks in recent studies represents a growing trend. However, there is still a gap in the simultaneous modeling of the three dimensions of sustainability in the electronic medical device supply chain (SC). In this paper, a novel hybrid chance-constrained programming and cost function model is presented for a green and sustainable closed-loop medical ventilator SC network design. To bring the problem closer to reality, a wide range of parameters including all cost parameters, demands, the upper bound of the released <inline-formula><tex-math id="M1">\begin{document}$ co_2 $\end{document}</tex-math></inline-formula>, and the minimum percentage of the units of product to be disposed and collected from a customer and to be dismantled and shipped from DCs are modeled as uncertain along with the normal probability distribution. The problem was first formulated into the framework of a bi-objective stochastic mixed-integer linear programming (MILP) model; then, it was reformulated into a tri-objective deterministic mixed-integer nonlinear programming (MINLP) one. In order to model the environmental sustainability dimension, in addition to handling the total greenhouse gas emissions, the total waste products were also controlled. The efficiency and applicability of the proposed model were tested in an Iranian medical ventilator production and distribution network. For sensitivity analyses, the effect of some critical parameters on the values of the objective functions was carefully examined. Finally, valuable managerial insights into the challenges of companies during the COVID-19 pandemic were presented. Numerical results showed that with the increase in the number of customers in the COVID-19 crisis, social responsibility could improve cost mean by up to 8%.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management,Applied Mathematics,Control and Optimization,Strategy and Management,Business and International Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3