Abstract
<p style='text-indent:20px;'>In this paper, we study the existence of positive solutions for the following quasilinear Schrödinger equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} -\triangle u+V(x)u+\frac{\kappa}{2}[\triangle|u|^{2}]u = \lambda K(x)h(u)+\mu|u|^{2^*-2}u, \quad x\in\mathbb{R}^{N}, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \kappa>0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \lambda>0, \mu>0, h\in C(\mathbb{R}, \mathbb{R}) $\end{document}</tex-math></inline-formula> is superlinear at infinity, the potentials <inline-formula><tex-math id="M3">\begin{document}$ V(x) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ K(x) $\end{document}</tex-math></inline-formula> are vanishing at infinity. In order to discuss the existence of solutions we apply minimax techniques together with careful <inline-formula><tex-math id="M5">\begin{document}$ L^{\infty} $\end{document}</tex-math></inline-formula>-estimates. For the subcritical case (<inline-formula><tex-math id="M6">\begin{document}$ \mu = 0 $\end{document}</tex-math></inline-formula>) we can deal with large <inline-formula><tex-math id="M7">\begin{document}$ \kappa>0 $\end{document}</tex-math></inline-formula>. For the critical case we treat that <inline-formula><tex-math id="M8">\begin{document}$ \kappa>0 $\end{document}</tex-math></inline-formula> is small.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference26 articles.
1. J. F. L. Aires, M. A. S. Souto.Equation with positive coefficient in the quasilinear term and vanishing potential, Topol. Methods Nonlinear Anal., 46 (2015), 813-833.
2. C. O. Alves, M. A. S. Souto.Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 254 (2013), 1977-1991.
3. C. O. Alves, Y. Wang, Y. Shen.Soliton solutions for a class of quasilinear Schrödinger equations with a parameter, J. Differential Equations, 259 (2015), 318-343.
4. H. Berestycki, P.-L. Lions.Nonlinear scalar field equations Ⅰ Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-346.
5. H. Brezis, L. Nirenberg.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献