Abstract
AbstractIn this paper, by using a change of variable and the mountain-pass theorem, we show that the following quasilinear Schrödinger systems $$ \textstyle\begin{cases} -\triangle u+V_{1}(x)u+\frac{\kappa}{2}[\triangle \vert u \vert ^{2}]u=\lambda f(x,u, v), & x\in \mathbb{R}^{N}, \\ -\triangle v+V_{2}(x)v+\frac{\kappa}{2}[\triangle \vert v \vert ^{2}]v=\lambda h(x,u, v), & x\in \mathbb{R}^{N} \end{cases} $$
{
−
△
u
+
V
1
(
x
)
u
+
κ
2
[
△
|
u
|
2
]
u
=
λ
f
(
x
,
u
,
v
)
,
x
∈
R
N
,
−
△
v
+
V
2
(
x
)
v
+
κ
2
[
△
|
v
|
2
]
v
=
λ
h
(
x
,
u
,
v
)
,
x
∈
R
N
have a nontrivial solution $(u, v)$
(
u
,
v
)
for all $\lambda >\lambda _{1}(\kappa )$
λ
>
λ
1
(
κ
)
, where $N\geq 3, V_{1}(x), V_{2}(x)$
N
≥
3
,
V
1
(
x
)
,
V
2
(
x
)
are positive continuous functions, κ, λ are positive parameters, and nonlinear terms $f, h\in C(\mathbb{R}^{N}\times \mathbb{R}^{2}, \mathbb{R})$
f
,
h
∈
C
(
R
N
×
R
2
,
R
)
. Our main contribution is that we can deal with the case when $\kappa >0$
κ
>
0
is large for the above systems.
Funder
National Natural Science Foundation of China
Yunnan Local Colleges Applied Basic Research Projects
Technology Innovation Team of University in Yunnan Province
Yunnan Fundamental Research Projects
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献