Affiliation:
1. College of Mathematics Science, Inner Mongolia Normal University , Hohhot , P.R. China
2. Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application, Ministry of Education, Inner Mongolia Normal University , Hohhot , P.R. China
3. Center for Applied Mathematics Inner Mongolia, Inner Mongolia Normal University , Hohhot , China
Abstract
Abstract
In this article, we consider the following quasilinear Schrödinger system:
−
ε
Δ
u
+
u
+
k
2
ε
[
Δ
∣
u
∣
2
]
u
=
2
α
α
+
β
∣
u
∣
α
−
2
u
∣
v
∣
β
,
x
∈
R
N
,
−
ε
Δ
v
+
v
+
k
2
ε
[
Δ
∣
v
∣
2
]
v
=
2
β
α
+
β
∣
u
∣
α
∣
v
∣
β
−
2
v
,
x
∈
R
N
,
\left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{\alpha +\beta }{| u| }^{\alpha -2}u{| v| }^{\beta },& x\in {{\mathbb{R}}}^{N},\\ -\varepsilon \Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{\alpha +\beta }{| u| }^{\alpha }{| v| }^{\beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right.
where
ε
>
0
,
k
<
0
\varepsilon \gt 0,k\lt 0
are real constants,
N
≥
3
N\ge 3
,
α
,
β
\alpha ,\beta
are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in
R
N
{{\mathbb{R}}}^{N}
, J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution
(
u
ε
,
v
ε
)
\left({u}_{\varepsilon },{v}_{\varepsilon })
for the above system, and
(
u
ε
(
x
)
,
v
ε
(
x
)
)
→
(
0
,
0
)
({u}_{\varepsilon }\left(x),{v}_{\varepsilon }\left(x))\to \left(0,0)
as
∣
ε
∣
→
0
| \varepsilon | \to 0
.