Author:
Wu Fang,Huang Lihong,Wang Jiafu
Abstract
<p style='text-indent:20px;'>In this paper, we consider the nonsmooth bifurcation around a class of critical crossing cycles, which are codimension-2 closed orbits composed of tangency singularities and regular orbits, for a two-parameter family of planar piecewise smooth system with two zones. By the construction of suitable displacement function (equivalently, Poincar<inline-formula><tex-math id="M1">\begin{document}$ {\rm\acute{e}} $\end{document}</tex-math></inline-formula> map), the stability and the existence of periodic solutions under the variation of the parameters inside this system are characterized. More precisely, we obtain some parameter regions on the existence of crossing cycles and sliding cycles near those loops. As applications, several examples are given to illustrate our main conclusions.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference26 articles.
1. K. D. S. Andrade, O. M. L. Gomide and D. D. Novaes, Qualitative analysis of polycycles in Filippov systems, Preprint, arXiv: 1905.11950, 2019.
2. M. D. Bernardo, K. H. Johansson, F. Vasca.Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140.
3. S. Chen and Z. Du, Stability and perturbations of homoclinic loops in a class of piecewise smooth systems, Internat. J. Bifur. Chaos Appl. Sci., 25 (2015), 1550114, 16 pp.
4. S. Coombes, R. Thul, K. C. A. Wedgwood.Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.
5. F. Dercole, A. Gragnani, S. Rinaldi.Bifurcation analysis of piecewise smooth ecological models, Theoretical Population Biology, 72 (2007), 197-213.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献