Affiliation:
1. Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China
Abstract
Like for smooth systems, a typical method to produce multiple limit cycles for a given piecewise smooth planar system is via homoclinic bifurcation. Previous works only focused on limit cycles that bifurcate from homoclinic orbits of piecewise-linear systems. In this paper, we consider for the first time the same problem for a class of general nonlinear piecewise smooth systems. By introducing the Dulac map in a small neighborhood of the hyperbolic saddle, we obtain the approximation of the Poincaré map for the nonsmooth homoclinic orbit. Then, we give conditions for the stability of the homoclinic orbit and conditions under which one or two limit cycles bifurcate from it. As an example, we construct a nonlinear piecewise smooth system with two limit cycles that bifurcate from a homoclinic orbit.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献