Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization

Author:

Wu Yixuan,Zhang Yanzhi

Abstract

<p style='text-indent:20px;'>In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian <inline-formula><tex-math id="M1">\begin{document}$ (- \Delta)^\frac{{ \alpha}}{{2}} $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ \alpha \in (0, 2) $\end{document}</tex-math></inline-formula>. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of <inline-formula><tex-math id="M3">\begin{document}$ {\mathcal O}(h^2) $\end{document}</tex-math></inline-formula>, while <inline-formula><tex-math id="M4">\begin{document}$ {\mathcal O}(h^4) $\end{document}</tex-math></inline-formula> for quadratic basis functions with <inline-formula><tex-math id="M5">\begin{document}$ h $\end{document}</tex-math></inline-formula> a small mesh size. This accuracy can be achieved for any <inline-formula><tex-math id="M6">\begin{document}$ \alpha \in (0, 2) $\end{document}</tex-math></inline-formula> and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies <inline-formula><tex-math id="M7">\begin{document}$ u \in C^{m, l}(\bar{ \Omega}) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M8">\begin{document}$ m \in {\mathbb N} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ 0 &lt; l &lt; 1 $\end{document}</tex-math></inline-formula>, our method has an accuracy of <inline-formula><tex-math id="M10">\begin{document}$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $\end{document}</tex-math></inline-formula> for constant and linear basis functions, while <inline-formula><tex-math id="M11">\begin{document}$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $\end{document}</tex-math></inline-formula> for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3