Local Elliptic Regularity for the Dirichlet Fractional Laplacian

Author:

Biccari Umberto1,Warma Mahamadi2,Zuazua Enrique3

Affiliation:

1. DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; and Facultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country, Spain

2. Department of Mathematics, College of Natural Sciences, University of Puerto Rico (Rio Piedras Campus), PO Box 70377, San Juan, PR 00936-8377, USA

3. DeustoTech, University of Deusto, 48007 Bilbao, Basque Country; and Facultad de Ingeniería, Universidad de Deusto, Avda Universidades 24, 48007 Bilbao, Basque Country; and Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain

Abstract

Abstract We prove the W loc 2 s , p ${W_{{\mathrm{loc}}}^{2s,p}}$ local elliptic regularity of weak solutions to the Dirichlet problem associated with the fractional Laplacian on an arbitrary bounded open set of N ${\mathbb{R}^{N}}$ . The key tool consists in analyzing carefully the elliptic equation satisfied by the solution locally, after cut-off, to later employ sharp regularity results in the whole space. We do it by two different methods. First working directly in the variational formulation of the elliptic problem and then employing the heat kernel representation of solutions.

Funder

U.S. Air Force

Ministerio de Economía y Competitividad

Agence Nationale de la Recherche

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference33 articles.

1. Adams D. R. and Hedberg L. I., Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer, Berlin, 1996.

2. Bakunin O. G., Turbulence and Diffusion: Scaling Versus Equations, Springer, Berlin, 2008.

3. Bernard C., Regularity of solutions to the fractional Laplace equation, preprint 2014, http://math.uchicago.edu/~may/REU2014/REUPapers/Bernard.pdf.

4. Biccari U., Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, preprint 2017, https://arxiv.org/abs/1411.7800v2.

5. Bologna M., Tsallis C. and Grigolini P., Anomalous diffusion associated with non-linear fractional derivative Fokker–Planck-like equation: Exact time-dependent solutions, Phys. Rev. E 62 (2000), 2213–2218.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3