1. R. T. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, (2018), 6571–6583.
2. T. Chen, E. B. Fox and C. Guestrin, Stochastic gradient hamiltonian monte carlo, Proceedings of the 31st International Conference on Machine Learning, (2014).
3. B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, L. Song.SBEED: Convergent reinforcement learning with nonlinear function approximation, Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, PMLR, 80 (2018), 1125-1134.
4. W. E, J. Han and Q. Li, A mean-field optimal control formulation of deep learning, Research in the Mathematical Sciences, 6 (2019), 41 pp.
5. N. El Karoui, S. Peng, M. C. Quenez.Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.