A backward SDE method for uncertainty quantification in deep learning

Author:

Archibald Richard1,Bao Feng2,Cao Yanzhao3,Zhang He4

Affiliation:

1. Computational Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

2. Department of Mathematics, Florida State University, Tallahassee, Florida, USA

3. Department of Mathematics and Statistics, Auburn University, Auburn, Alabama, USA

4. School of Mathematics, Jilin University, Changchun, China

Abstract

<p style='text-indent:20px;'>We develop a backward stochastic differential equation based probabilistic machine learning method, which formulates a class of stochastic neural networks as a stochastic optimal control problem. An efficient stochastic gradient descent algorithm is introduced with the gradient computed through a backward stochastic differential equation. Convergence analysis for stochastic gradient descent optimization and numerical experiments for applications of stochastic neural networks are carried out to validate our methodology in both theory and performance.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference31 articles.

1. R. T. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, (2018), 6571–6583.

2. T. Chen, E. B. Fox and C. Guestrin, Stochastic gradient hamiltonian monte carlo, Proceedings of the 31st International Conference on Machine Learning, (2014).

3. B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, L. Song.SBEED: Convergent reinforcement learning with nonlinear function approximation, Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Sweden, PMLR, 80 (2018), 1125-1134.

4. W. E, J. Han and Q. Li, A mean-field optimal control formulation of deep learning, Research in the Mathematical Sciences, 6 (2019), 41 pp.

5. N. El Karoui, S. Peng, M. C. Quenez.Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3