1. A measure theoretical approach to the mean-field maximum principle for training NeurODEs;Bonnet;Nonlinear Anal.,2023
2. A mean-field optimal control formulation of deep learning;E;Res. Math. Sci.,2019
3. A backward SDE method for uncertainty quantification in deep learning;Archibald;Discret. Contin. Dyn. Syst.,2022
4. de Bie, G., Peyré, G., and Cuturi, M. (2019, January 9–15). Stochastic Deep Networks. Proceedings of the 36th International Conference on Machine Learning, PMLR 97, Long Beach, CA, USA.
5. Baudelet, S., Frénais, B., Laurière, M., Machtalay, A., and Zhu, Y. (2023). Deep Learning for Mean Field Optimal Transport. arXiv.