A study of disproportionately affected populations by race/ethnicity during the SARS-CoV-2 pandemic using multi-population SEIR modeling and ensemble data assimilation

Author:

Fleurantin Emmanuel,Sampson Christian,Maes Daniel Paul,Bennett Justin,Fernandes-Nunez Tayler,Marx Sophia,Evensen Geir

Abstract

<p style='text-indent:20px;'>The disparity in the impact of COVID-19 on minority populations in the United States has been well established in the available data on deaths, case counts, and adverse outcomes. However, critical metrics used by public health officials and epidemiologists, such as a time dependent viral reproductive number (<inline-formula><tex-math id="M1">\begin{document}$ R_t $\end{document}</tex-math></inline-formula>), can be hard to calculate from this data especially for individual populations. Furthermore, disparities in the availability of testing, record keeping infrastructure, or government funding in disadvantaged populations can produce incomplete data sets. In this work, we apply ensemble data assimilation techniques which optimally combine model and data to produce a more complete data set providing better estimates of the critical metrics used by public health officials and epidemiologists. We employ a multi-population SEIR (Susceptible, Exposed, Infected and Recovered) model with a time dependent reproductive number and age stratified contact rate matrix for each population. We assimilate the daily death data for populations separated by ethnic/racial groupings using a technique called Ensemble Smoothing with Multiple Data Assimilation (ESMDA) to estimate model parameters and produce an <inline-formula><tex-math id="M10000">\begin{document}$R_t(n)$\end{document}</tex-math></inline-formula> for the <inline-formula><tex-math id="M2000">\begin{document}$n^{th}$\end{document}</tex-math></inline-formula> population. We do this with three distinct approaches, (1) using the same contact matrices and prior <inline-formula><tex-math id="M30000">\begin{document}$R_t(n)$\end{document}</tex-math></inline-formula> for each population, (2) assigning contact matrices with increased contact rates for working age and older adults to populations experiencing disparity and (3) as in (2) but with a time-continuous update to <inline-formula><tex-math id="M4">\begin{document}$R_t(n)$\end{document}</tex-math></inline-formula>. We make a study of 9 U.S. states and the District of Columbia providing a complete time series of the pandemic in each and, in some cases, identifying disparities not otherwise evident in the aggregate statistics.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference32 articles.

1. Cyberstates 2020: The definitive guide to the U.S. tech industry and tech wrokforce, URL https://www.cyberstates.org, Last accessed 2021-04-13.

2. Disparities in Wealth by Race and Ethnicity in the 2019 Survey of Consumer Finances, URL https://www.federalreserve.gov/econres/notes/feds-notes/disparities-in-wealth-by-race-and-ethnicity-in-the-2019-survey-of-consumer-finances-20200928.htm, Last accessed 2021-04-13.

3. Diversity in high tech, URL https://www.eeoc.gov/special-report/diversity-high-tech, Last accessed 2021-04-13.

4. Economy at a Glance: California, URL https://data.bls.gov/timeseries/LASST060000000000006?, Last accessed 2021-04-13.

5. IHME COVID-19 estimates, URL http://www.healthdata.org/covid/data-downloads, Last accessed 2021-04-13.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3