Affiliation:
1. Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, 41125 Modena, Italy
2. Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Via Claudio 25, 80125 Napoli, Italy
Abstract
<p style='text-indent:20px;'>We study the regularity properties of the second order linear operator in <inline-formula><tex-math id="M1">\begin{document}$ {{\mathbb {R}}}^{N+1} $\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \mathscr{L} u : = \sum\limits_{j,k = 1}^{m} a_{jk}\partial_{x_j x_k}^2 u + \sum\limits_{j,k = 1}^{N} b_{jk}x_k \partial_{x_j} u - \partial_t u, \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ A = \left( a_{jk} \right)_{j,k = 1, \dots, m}, B = \left( b_{jk} \right)_{j,k = 1, \dots, N} $\end{document}</tex-math></inline-formula> are real valued matrices with constant coefficients, with <inline-formula><tex-math id="M3">\begin{document}$ A $\end{document}</tex-math></inline-formula> symmetric and strictly positive. We prove that, if the operator <inline-formula><tex-math id="M4">\begin{document}$ {\mathscr{L}} $\end{document}</tex-math></inline-formula> satisfies Hörmander's hypoellipticity condition, and <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> is a Dini continuous function, then the second order derivatives of the solution <inline-formula><tex-math id="M6">\begin{document}$ u $\end{document}</tex-math></inline-formula> to the equation <inline-formula><tex-math id="M7">\begin{document}$ {\mathscr{L}} u = f $\end{document}</tex-math></inline-formula> are Dini continuous functions as well. We also consider the case of Dini continuous coefficients <inline-formula><tex-math id="M8">\begin{document}$ a_{jk} $\end{document}</tex-math></inline-formula>'s. A key step in our proof is a Taylor formula for classical solutions to <inline-formula><tex-math id="M9">\begin{document}$ {\mathscr{L}} u = f $\end{document}</tex-math></inline-formula> that we establish under minimal regularity assumptions on <inline-formula><tex-math id="M10">\begin{document}$ u $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference26 articles.
1. F. Anceschi, S. Polidoro.A survey on the classical theory for Kolmogorov equation, Matematiche (Catania), 75 (2020), 221-258.
2. G. Arena, A. O. Caruso, A. Causa.Taylor formula on step two Carnot groups, Rev. Mat. Iberoam., 26 (2010), 239-259.
3. A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, in Springer Monographs in Mathematics, Springer, Berlin, 2007.
4. A. Bonfiglioli.Taylor formula for homogeneous groups and applications, Math. Z., 262 (2009), 255-279.
5. C. Bucur, A. L. Karakhanyan.Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proc. Amer. Math. Soc., 145 (2017), 637-651.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献